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Propulsion by actin polymerization is widely used in cell motility. Here, we investigate a model of the brush
range of an actin gel close to a propelled object, describing the force generation and the dynamics of the
propagation velocity. We find transitions between stable steady states and relaxation oscillations when the
attachment rate of actin filaments to the obstacle is varied. The oscillations set in at small values of the
attachment rate via a homoclinic bifurcation. A second transition from a stable steady state to relaxation
oscillations, found for higher values of the attachment rate, occurs via a supercritical Hopf bifurcation. The
behavior of the model near the second transition is similar that of a system undergoing a canard explosion.
Consequently, we observe excitable dynamics also. The model further exhibits bistability between stationary
states or stationary states and limit cycles. Therefore, the brush of actin filament ends appears to have a much
richer dynamics than was assumed until now.
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I. INTRODUCTION

Cell motility is essential in life. During morphogenesis,
dividing cells of an organism move in a controlled way to
sites where they form specific tissues and organs. Cells of the
immune system move to the place of an infection to kill the
microorganisms causing it. Connective tissue cells move to a
wound place to replace the damaged units when a wound is
healing. In most cases, the cytoskeleton of the cell plays the
essential role in generating the forces driving cellular motil-
ity �1,2�. The cytoskeleton is a cross-linked branched net-
work of biopolymers of different stiffness. Among them,
semiflexible actin filaments have the remarkable property of
being polarized, with one end growing by polymerization
and the other end shrinking by depolymerization. Actin fila-
ments organize with their growing ends oriented toward the
intracellular obstacle, for example, the cell membrane, as a
response to external stimuli. The self-assembly mechanism is
still the subject of intensive research �3�. Polymerization of
the actin filaments against the obstacle creates a mechanical
stress that pushes it forward �4–6�. Depolymerization at the
opposite end of the filaments perpetuates the force-
generating process by releasing actin monomers that diffuse
to the front, where they are consumed by polymerization �2�.

Several pathogens, such as Listeria monocytogenes, use
the host cell’s actin polymerization machinery to propel
themselves through the host cell or even to cross to neigh-
boring cells �7�. The surface of the bacterium contains the
protein ActA, which induces the assembly of free actin into a
cometlike tail of cross-linked filaments oriented with their
rapidly polymerizing ends toward the posterior end of the
bacterium �8,9�.

While the motion of the wild-type Listeria is steady, the
intracellular movement of its mutant expressing ActA-�21–97
is oscillatory and shows a particularly interesting temporal
pattern �10,11�: the bacterium moves very slowly over a pe-
riod of time varying between 30 and 100 s in different ex-
periments, jumps forward during the next several seconds,

and then slows down again abruptly. Such periodic solutions,
consisting of long intervals of slowly changing dynamics
that alternate with short periods of very fast transition, are
found in several chemical and biological systems and are
known as relaxation oscillations �12�. The existence of such
abrupt changes in the temporal behavior of the system �e.g.,
Fig. 8 in �11�� suggests the presence of certain dynamical
properties, such as excitability and sudden transitions from
steady to oscillatory solutions. Awareness of these dynamic
regimes could be important for understanding more complex
spatiotemporal phenomena found for actin-based motility
�13–15�. As a first step, we analyze here a mathematical
model for actin-based motility and focus on these dynamic
properties and their mathematical background.

Actin-based propulsion can be reconstituted in vitro using
plastic beads, lipid vesicles, and oil droplets �16–18�. Experi-
ments on ActA-coated beads and vesicles have revealed a
similar hopping movement. These systems have the advan-
tage of providing access to experimental parameters. Varia-
tion of the bead diameter and the surface density of protein
caused transitions from saltatory motion to a steady regime,
like the smooth movement of the wild-type Listeria �18�.

The actin-based propulsion of Listeria monocytogenes
was modeled at a mesoscopic level �11� by treating the actin
tail as a continuous elastic gel. The model exhibits both
steady and saltatory motion. Saltatory motion arises from a
stick-slip transition caused by nonlinear friction between the
gel and the moving obstacle. That requires curved surfaces
for hopping to occur. Furthermore, the model predicts that
the strength of the linkage between Listeria and the actin tail
is stronger during the slow phase and weaker during the
rapid one. Recently, an alternative microscopic model for
Listeria propulsion was proposed �19�, which focuses on the
details of the force generation process and the balance be-
tween the pulling forces exerted by actin filaments bound to
the surface of the bacterium, and the pushing forces of the
polymerizing actin filaments. This approach also reproduces
the two regimes of motion observed in experiments. Salta-
tory motion arises from a push-pull mechanism and does not
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require bent surfaces. The model predicts that the increase of
the rate at which actin filaments attach to the surface of the
bacterium can induce a transition from the steady to the pe-
riodic regime. Further increase of this parameter induces a
second transition from the oscillatory to the steady regime.

The present paper focuses on the transitions between the
oscillatory and steady regimes in this model �19�. We show
that the initiation of the relaxation oscillation at the first tran-
sition is due to a homoclinic bifurcation. Slightly inside the
oscillatory regime, a stable limit cycle coexists with one
stable and two unstable stationary states. The stable steady
state is far from the limit cycle, which is located near the
unstable ones. At the transition point, the limit cycle collides
with one of the unstable points, and a trajectory ending in the
stable steady state emerges. The second transition is due to a
Hopf bifurcation of the steady state followed by a sudden
explosion of the stable Hopf cycle with small amplitude and
small period into large relaxation oscillations with big am-
plitude and big period. The transition is preceded by excit-
ability of the stable state: Even small perturbations cause the
system to make a very large amplitude excursion before re-
turning to the steady state. The trajectory during such an
excursion follows part of the big limit cycle found after the
transition.

II. DESCRIPTION OF THE MODEL

We describe here the microscopic model of actin-based
propulsion developed in �19�. We assume a population of
N�200 parallel actin filaments oriented with their fast-
growing ends toward an obstacle �see Fig. 1�. In this paper
we consider the case of polymers normal to the obstacle,
which are allowed to fluctuate in three dimensions. Some
results on oscillations with tilted filaments and crossed popu-
lations are reported in �19�. Filaments may attach to the ob-
stacle by different mechanisms �3,20,21� resulting in a popu-
lation of attached filaments �number na and mean free

contour length la� and a detached population �number nd,
mean free contour length ld�. Attached filaments can detach
with the stress-dependent rate kd, depending on the force Fa
exerted on the obstacle as

kd�Fa� = kd
0 exp�− �Fa/kBT� ,

where ��2.7 nm is the size of an actin monomer and
kd

0�0.5 s−1 the detachment rate in the absence of forces �22�.
The attachment rate ka of the polymers can be assumed to

be constant in a certain vicinity of the obstacle only. In prin-
ciple, our detached model filaments could attach even if they
are outside that region. However, if they do, they detach
immediately again. This behavior follows from the force de-
pendence of the detachment rate kd, which diverges exponen-
tially with increasing distance. Additionally, typically ld� la
�� applies and detached filaments with a large distance be-
tween obstacle and tip do not occur; the tip of detached fila-
ments is almost all the time at the obstacle and pushes it.
Therefore, ka can be assumed to be constant for all filament
positions, without changing the physics of the problem �no
attached filaments if the filament tips are too far from the
wall�. We make this assumption to simplify the numerical
handling of the equations, since na can now become very
small, but does not vanish.

Polymers attach by elastic linker proteins to the surface of
the obstacle. The serial arrangement of polymer and linker
leads to a piecewise linear force �see �19� for details�

Fa�la,�� = �− k��� − R� , � � R ,

− keff�� − R� , R � � � la,

− kl�� − la� − keff�la − R� , � � la,
�

where R�la�= la�1− la /2lp� is the equilibrium length of the
polymer, k��la�=6kBTlp

2 / la
4 �23� is the linear response coeffi-

cient of a grafted wormlike chain, kl�1 pN /nm denotes the
spring constant of the linker, and keff=klk� / �kl+k�� is the ef-
fective linear coefficient.

Detached filaments grow with the polymerization velocity
vp, depending on the force Fd with which the polymer pushes
against the obstacle as
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FIG. 2. Scaling function for the entropic force exerted on a wall
by a polymer in the semiflexible limit ld	 lp.FIG. 1. �Color online� Schematic representation of the model:

Polymers are anchored with one end into a cross-linked network
and oriented with the other end against an obstacle. Filaments can
attach to the surface of the obstacle at rate ka. Attached polymers
can detach again at rate kd. Detached filaments polymerize at rate
kon. The boundary of the cross-linked network advances with veloc-
ity vg. The obstacle moves with velocity v0 into a viscous medium.
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vp�Fd� = vp
max exp�− �Fd/kBT� ,

with vp
max�500 nm s−1 being the free polymerization veloc-

ity �24�.
The pushing force Fd of a single detached filament grow-

ing against an obstacle is of entropic origin and has been
calculated in �25�. It depends on the free contour length ld of
the filament and on the distance � to the obstacle in a non-
linear manner. In the semiflexible limit ld	 lp, where
lp�15 
m denotes the persistence length of the polymer, a
scaling law may be obtained for the entropic force �25�. In
this regime we have

Fd�ld,�� =
�2kBTlp

4ld
2 f	 �ld − ��lp

ld
2 
 .

The scaling function f is shown in Fig. 2.
At the end opposite to the obstacle, filaments are assumed

to be anchored into a cross-linked network that advances
with the velocity

vg�l� = vg
max tanh�l/l̄� ,

depending on the free contour length l of the filament. It is
assumed that the cross-linking velocity is proportional to the
free contour length for short polymers and saturates to a

maximum value for lengths of the order of l̄�100 nm.
As shown in �19�, the system may be completely de-

scribed by four dynamic variables: the number na of attached
filaments, the lengths la , ld of attached and detached fila-

ments, and the distance � between the graft point of the fila-
ments and the obstacle. The time evolution of these variables
can be computed from the equations governing the length
distributions of attached and detached filaments and using a
monodisperse approximation �see the Appendix�,

�tna = − kdna + kand,

�tla = − max	 la

�
,1
vg�la� + ka

nd

na
�ld − la� ,

�tld = vp − max	 ld

�
,1
vg�ld� + kd

na

nd
�la − ld� ,

�t� =
1

�
�naFa + ndFd� −

1

N
�vg�la�na + vg�ld�nd� , �1�

where nd=N−na denotes the number of detached filaments.
The obstacle is assumed to move in a medium with an effec-
tive viscous coefficient �. For an obstacle of several mi-
crometers length and a medium ten times more viscous than
water, � is about 10−3 pN s nm−1. The factor max�l /� ,1� in
the equations for la and ld gives the ratio of the polymer
contour length swallowed by the growing network to the
distance it advances in the direction normal to the obstacle.
That factor is equal to 1 when the polymer is stretched
�l��� and to l /� when the polymer is bent �l���.

0 5 10 15 20 25 30
time (s)

-10
-5
0
5

F a
(p

N
)

0 1 2 3 4 5
-log

10
[ η (pN s nm

-1
)]

7.4

7.6

7.8

8

8.2

8.4

pe
ri

od
(s

)

0.2
0.4
0.6
0.8

v 0
(µ

m
/s

)

FIG. 4. Left: Time evolution of the obstacle velocity v0 and of the force Fa during the oscillation in Fig. 3. Right: Saturation of the period
of the cycle to a bounded nonzero limit value when the viscous coefficient � is decreased from 10−1 to 10−5 pN s nm−1.
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FIG. 3. �Color online� Left: Phase diagram of the model �1� outlining stationary and oscillatory regimes. Right: Oscillatory solution
obtained for vg

max=300 nm s−1 and ka=1 s−1.
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III. OSCILLATIONS

Numerical simulations of the time evolution of the model
when the attachment rate ka and the maximal graft velocity
vg

max are varied lead to the phase diagram in Fig. 3 �left
panel�: There is an oscillatory regime, separated from the
steady state regime by two transition lines. Note that the
lower transition line is tangent to ka=0, so that there are no
oscillations if there is no attachment of the filaments to the
surface of the obstacle. Oscillations are, however, possible
for very small values of the attachment rate and vg

maxvp
max.

Figure 3 �right panel� shows an example of the simulation
results for a set of parameters inside the oscillatory regime:
The system switches periodically and in a very short time
between a state with a high ratio of attached polymers, char-
acterized by slowly decreasing lengths of attached and de-
tached filaments, and a state with almost no attached poly-

mers and slowly increasing polymer lengths. The plots of the
velocity v0 of the obstacle and of the force Fa show the
characteristic form of a relaxation oscillation, with short pe-
riods of very fast transition alternating with long periods of
slow dynamics �see left panel in Fig. 4�. This periodic struc-
ture is typical for systems having at least one component that
changes very fast compared to the other variables. The in-
duction of such a separation of time scales in our system is
twofold: first, by the relatively small value of the viscous
coefficient �, and, second, by the particular form of the bal-
ance between the polymerization force ndFd and the force
exerted by bound filaments, naFa �26�. If the obstacle is in
equilibrium ��t�=0�, these two forces have almost equal size
but opposite signs, such that �naFa+ndFd�	 �naFa���ndFd�;
although already small perturbations of this balance result in
a very big cumulative force, which tries to reestablish it
again. As expected for relaxation oscillations, when � is de-
creased by several orders of magnitude, the period of the
cycle converges to a bounded nonzero limit value �see right
panel in Fig. 4�. For further discussion of the fast and slow
dynamic variables, see Sec. IV. In the whole oscillatory re-
gime, the cycle shows two alternating phases. The first one is
characterized by high obstacle velocity, increasing filament
lengths, and a small fraction of attached polymers. By con-
trast, during the second phase the obstacle moves slowly,
filament length decreases, and the fraction of attached poly-
mers is high. The lengths of the two oscillation phases and
their ratio vary, however, inside the oscillatory regime �see
Fig. 5�. Oscillations with a fast phase considerably shorter
than the slow phase can be obtained especially near the lower
border of the oscillatory regime �see Fig. 5, top panel, and
also next section�. They exhibit periodic spikelike maxima of
the obstacle velocity. For a detailed discussion of this type of
oscillation, which is relevant for the modeling of the hopping
Listeria, see �19�. The fast phase represents a larger fraction
of the period with oil droplets propelled by actin polymer-
ization �27�, similar to the example in Fig. 5, bottom panel.

In this paper we go beyond these regimes and discuss the
whole parameter domain that may be relevant for other bio-
logical systems which exhibit actin-based motility. In par-
ticular, a thorough understanding of the local dynamics is a
prerequisite for understanding spatiotemporal phenomena.

IV. HOMOCLINIC BIFURCATION

Deep inside the oscillatory regime shown in Fig. 3, oscil-
lations set in independent of the chosen initial conditions of
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FIG. 5. Different oscillation patterns obtained when the param-
eters are varied. Variation of vg

max changes the ratio between the
durations of the fast and slow phases: Close to the lower transition
�top panel: vp

max=300 nm s−1, kd=0.5 s−1, ka=2 s−1, vg
max

=85 nm s−1�, the obstacle moves slowly most of the time and makes
short jumps periodically, similar to the movement of Listeria. Close
to the upper transition �middle panel: vp

max=300 nm s−1, kd

=0.5 s−1, ka=2 s−1, vg
max=375 nm s−1�, the obstacle moves fast most

of the time and makes short breaks periodically. The height of the
velocity peaks is influenced mainly by the free polymerization
speed vp

max. Bottom panel �vp
max=150 nm s−1, kd=0.2 s−1, ka

=1.8 s−1, vg
max=50 nm s−1� shows oscillations comparable to the

movement of oil droplets �see �27�, Fig. 3�.
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FIG. 6. Numerical simulations of Eq. �1� for a set of parameters �vg
max=200 nm s−1 and ka=0.55 s−1� where the system shows bistability.

Depending on the initial conditions, the system reaches a stable limit cycle �left case� or a stable steady state �right case�. Note that the steady
state is far away from the limit cycle.
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the simulations. However, if we start in this regime and
slowly reduce the attachment rate, we find just before the
lower transition line coexistence of the stable limit cycle
with a stable steady state, which is situated far away from the
limit cycle in phase space. Depending on the initial values,
either oscillations or the steady state is reached, as shown in
Fig. 6 �see also Sec. VI�. When the limit cycle is selected by
the initial condition, we find that its period increases very
fast on approaching the lower transition line, while its am-
plitude remains unchanged. At the transition, oscillations dis-
appear with finite amplitude, and the stable steady state,
which was present also before the transition, remains as an
attractor only �see Fig. 7�. Direct computation of the steady
states by imposing stationarity in Eq. �1� and linear stability
analysis leads to the following scenario �see Fig. 8�. Deep
inside the oscillatory regime, there exists only one unstable
steady state; when the lower transition line is approached
from above, two new steady states appear via a saddle-node
bifurcation �A�. Therefore, between the saddle-node bifurca-
tion line and the lower transition line, a stable steady state
coexists with the stable limit cycle and two other unstable
steady states. The stable steady state is far from the limit
cycle, which is located around the lower unstable state and
below the upper unstable state. When the transition line is
crossed, the limit cycle collides with the upper unstable point
in a homoclinic bifurcation �point D� and the system is at-
tracted by the only existing stable steady state. When the
attachment rate is further decreased, the lower unstable state
becomes stable via a Hopf bifurcation �C� and disappears
shortly after by colliding with the remaining unstable state
�point B�. The limit cycle arising from the Hopf bifurcation
in point C has a tiny amplitude and disappears between C
and point D in a bifurcation which we did not investigate in
detail.

V. CANARD EXPLOSION AND EXCITABILITY

The sudden growth of the amplitude and period of a limit
cycle over a short parameter interval is known as canard
explosion �12�. Canard explosions have been evidenced ex-
perimentally in several chemical systems subject to relax-
ation oscillations, such as the Belousov-Zhabotinski reaction
or gas-phase reactions such as hydrogen oxidation �28,29�.
Canard explosion and excitability are closely linked, as dis-
cussed previously �30�. Both phenomena are present in our
system when the upper transition line is crossed. When
started very close to the steady state, numerical simulations
show first the presence of a supercritical Hopf bifurcation
�confirmed by the linear stability analysis�, and the explosion

FIG. 7. Evolution of the system when the lower transition line is crossed from above for vg
max=200 nm s−1. When the transition is

approached, the period of the relaxation oscillations diverges within a short parameter interval; the amplitude remains constant. Note the
different scaling of the � axis after the transition �last panel�.
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of the small Hopf cycle to large relaxation oscillations
nearby in parameter space �see Fig. 9�. If the initial condition
is slightly perturbed, the system shows excitability before the
transition to big amplitude oscillations �Fig. 10�.

The analysis of the trajectory shows a strong correlation
of the length variables la and ld and �. In order to identify the
basic dynamic variables of the system, we perform therefore
a coordinate transformation, replacing ld and � by the differ-
ences xª ld− la and yª�− la. Furthermore, we reduce the
system by making the pseudo-steady-state approximation for
na. Setting �tna=0 and inserting the solution

na�la,y� = n
ka

ka + kd�la,y�

into the remaining three equations, we obtain a system of the
form

�tla = f1�la,x,y ;ka� ,

�tx = f2�la,x,y ;ka� ,

��ty = f3�la,x,y ;ka,�� . �2�

Numerical simulations of �2� show qualitatively the same
behavior as the full system when going from large to small
values of ka. For ka�ka

H���, a stable steady state exists. It
loses stability by a Hopf bifurcation at ka=ka

H���. At
ka=ka

C��� with ka
C�ka

H, the small limit cycle explodes into
big relaxation oscillations.

Due to the small value of the viscosity � of the intracel-
lular fluid, the variable y induces a fast time scale �ª t /�.
The dynamics of �2� can also be explained theoretically for
�	1 �12� by analysis and combination of the dynamics of
the reduced problem

0 = f3�la,x,y ;ka;0� ,

�tla = f1�la,x,y ;ka� ,

�tx = f2�la,x,y ;ka� ,

and the dynamics of the layer problem

��y = f3�la,x,y ;ka,0� ,

��la = 0,

��x = 0.

System �2� has the following remarkable properties �compare
conditions �A1� and �A4� and �A3�� �A4�� in �12��.

�I� The critical manifold Mª ��la ,x ,y� : f3�la ,x ,y ;ka ,0�
=0 is folded; the plane sections through M for constant
values of x are S shaped �see Figs. 11 and 12�.

�II� For the layer problem, the upper and lower branches
are attracting ��f3 /�y�0� and the middle branch is repelling
��f3 /�y�0�. Therefore, when started away from the critical
surface M, the system will move rapidly to one of the attract-
ing branches.

�III� For ka�ka
C�0�, the slow flow on M satisfies �tla�0

on the upper branch and �tla�0 on the lower branch. This
ensures that the system, once it has reached an attracting
branch, moves always toward the fold.

�IV� For ka�ka
C, the two folds Fª ��la ,x ,y�

�M :�f3 /�y�la ,x ,y ;ka ,0�=0 of M are generic, i.e., points
in F satisfy the following conditions:
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FIG. 9. Evolution of the system when the upper transition line is
crossed from above at vg

max=300 nm s−1. First, the steady state loses
stability via a supercritical Hopf bifurcation; a stable limit cycle
with small amplitude and small period appears. Shortly after, the
limit cycle explodes into big relaxation oscillations. Note the dif-
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�2f3

�y2 � 0,
�f3

�x
� 0,

�f3

�la
� 0, f1 � 0, f2 � 0.

The fold connecting lower and middle branches stays generic
also for ka=ka

C.
�V� The only fixed point P �f1�P�= f2�P�= f3�P�=0� of

the problem is located close to one of the folds and switches
from the upper attracting branch to the repelling branch
when the attachment rate is reduced below ka

C. At the critical
value ka

C�0� this steady state becomes a nondegenerate ca-
nard point satisfying

�2f3

�y2 � 0,
�f3

�x
� 0,

�f3

�la
� 0

and

�f1

�y
� 0,

�f2

�y
� 0,

�f1

�ka
� 0,

�f2

�ka
� 0.

Conditions I–V ensure �12� that for sufficient small � values,
ka

H��� and ka
C��� exist, such that the following situations ex-

ist.
�1� For ka�ka

H��� a unique excitable stable state exists,
that is situated on the upper attracting branch, close to the
fold. If the system is slightly perturbed, it will return to its
equilibrium immediately. Larger perturbations, beyond a
well-defined threshold, will cause the system to make a big
excursion before returning to equilibrium. The trajectory
jumps from the upper branch to the lower branch, then
moves close to the critical manifold toward the fold, jumps
back to the upper branch when it comes to the fold, and
finally moves on the upper branch towards the fold, being
attracted by the steady state.

�2� For ka�ka
H��� a small stable limit cycle exists that

appears through a supercritical Hopf bifurcation at
ka=ka

H���. Similarly to the excitability of the steady state
before the Hopf bifurcation, the small limit cycle is also
excitable.

�3� For ka�ka
C��� a unique strongly attracting relaxation

limit cycle exists. As shown in Fig. 11, the trajectory of this
cycle remains close to the critical manifold M. When on one
of the attracting branches, the system moves toward the fold.

la

y

x

FIG. 11. �Color� Critical manifold M �red� and trajectory of the
full �green� and reduced �blue� systems in the phase space �la-x-y�
for vg

max=300 nm s−1, ka=3.482 s−1, and �=10−3 pN s nm−1. The
upper and lower branches are attracting, the middle one is repelling.
The only �unstable� steady state of the system is situated on the
middle branch, near the fold, close to the point where both trajec-
tories leave the upper branch �black arrow�.
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FIG. 12. �Color� Left: Section through the critical manifold M for x=7.58 nm �red� and the projection �blue� of the trajectory of the
reduced system on the la-y plane. Right: Section through the manifold ẏ=0 for la=443.72 nm �red� and the projection �blue� of the trajectory
of the reduced system on the x-y plane. The full three-dimensional trajectory crosses the represented sections in A. Between B and A the
trajectory runs on the leaf of the manifold belonging to the upper branch. In A, the system leaves the manifold ẏ=0 and switches to the lower
branch in C. Between C and D the trajectory runs on the lower leaf. From D to B, the system switches back from the lower to the upper
attracting branch, going through the middle repelling branch.

DYNAMIC REGIMES AND BIFURCATIONS IN A MODEL… PHYSICAL REVIEW E 78, 031915 �2008�

031915-7



When the fold is reached, the system leaves the critical mani-
fold M and jumps almost instantaneously from one stable
branch to the other one.

For comparison, the projection of the full system’s trajec-
tory and that of Eq. �2� on the �la ,x ,y� space are plotted in
Fig. 11. Although there are considerable differences between
the two cycles during motion on individual branches of the
critical manifold M, the full system also follows M most of
the time, switching between its attracting branches when it
comes to a fold point. The transitions are smoother compared
to the reduced system, suggesting that y is not the pure com-
ponent corresponding to the fast time scale.

Figure 12 shows two-dimensional sections trough the
manifold of Fig. 11 for fixed values of x �left� and la �right�
and the projection of the trajectory of the reduced system on
the la-y and x-y planes, respectively. We present the two
sections that include the leaving point located close to the
unstable steady state, where the trajectory of the reduced
system leaves the upper attracting branch.

VI. BISTABILITY

We return now to the discussion of the bistable regime
mentioned in Sec. III, where a stable stationary state coexists
with the stable limit cycle. The results of the numerical simu-
lations and of the linear stability analysis for the stationary
states are summarized in Figs. 13 and 14. Figure 13 shows
the different stability regimes in the vg

max-ka parameter plane.
For a given value of vg

max, the dependence of the steady states
and their linear stability on ka is represented in Fig. 14. As
stated before, the lower transition line is located inside a
region where one stable stationary state coexists with two

unstable ones and consists of the points where the cycle col-
lides with one of the unstable points, giving rise to a ho-
moclinic orbit �red point in Fig. 14�. The bistable region,
where the cycle coexists with one steady state is located
between the red line and the upper black line. In addition to
the transitions we already discussed, further bifurcations oc-
cur for attachment rates ka that are larger than in the phase
diagram of Fig. 3. Thus, another bistability region exists
bounded by two saddle-node bifurcations at ka�5 s−1 and
ka�6 s−1 �continuous green lines in Fig. 13�. Here, two dif-
ferent stable steady states are found. For small values of the
graft velocity vg

max one of the steady states interferes with the
oscillatory regime, and the canard explosion will not be ob-
served. In this case, the oscillations disappear via a saddle-
node bifurcation on the limit cycle �dashed green line in Fig.
13�.

VII. CONCLUSIONS

We analyzed two different transitions from steady behav-
ior to oscillations in a model for actin-based motility by
varying the rate with which actin attaches to the obstacle. In
the oscillatory regime, some of the physical quantities char-
acterizing the system, such as the number and the pulling
force of attached filaments, show short periods of very fast
transition, resembling the temporal structure of relaxation os-
cillations. The small viscosity of the medium and the sensi-
tive balance between pulling and pushing forces with com-
parable values and opposite signs introduce indeed a
separation of the time scales: The position of the obstacle
reacts very quickly compared to the other variables when the
force balance changes. Since the fast variable position
merely provides the transitions between the slow manifolds
in the limit cycle, a decrease in the viscosity of the medium
results in a saturation of the oscillation period at a nonzero
value and not proportionality of the period to �.

A first transition from the oscillatory to a steady regime
was shown to be preceded by bistability and occurs via a
homoclinic bifurcation. The second transition occurs via a
Hopf bifurcation. Short after this bifurcation, both period and

FIG. 13. �Color� Positions of the saddle-node bifurcations �black
and green lines�, homoclinic bifurcation �red line�, Hopf bifurcation
�blue line�, and canard explosion �orange� in the parameter space
vg

max-ka. Also displayed are the number of stable steady states and
the total number of steady states �in parentheses� in the correspond-
ing parameter domain. A second Hopf bifurcation exists very close
to the lowest saddle-node bifurcation �lower black line� and is not
shown here �see Figs. 8 and 14�. Between the two black lines, there
are three steady states, one being stable. Inside the oscillatory do-
main, the saddle node appears on the limit cycle �dashed green
line�.

FIG. 14. �Color� Steady states and linear stability for vg
max

=300 nm s−1. Stable states are shown with black, unstable ones
with red lines. The points mark the saddle-node bifurcations �black
and green�, Hopf bifurcations �blue�, and homoclinic bifurcation
�red�.
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amplitude of the Hopf cycle increase suddenly as in a canard
explosion. For a reduced three-dimensional system, obtained
by a pseudo-steady-state approximation for one of the vari-
ables, we could indeed show the existence of a canard point.
The reduced system is, however, only qualitatively a good
approximation of the model, since the size and period of the
cycle are considerably changed. Our system also shows ex-
citability, a phenomenon that has been related to a canard
explosion before.

We found a rich bifurcation scheme for the brush dynam-
ics with our model. Such a variety has not been observed
before. Only steady motion has been reported for the teth-
ered ratchet model �24,31�, which is a brush model similar to
ours. Continuum models for the gel �11� show steady motion
and oscillatory behavior if they are applied to curved ob-
stacle surfaces. Here, we have shown that actin-based motil-
ity may indeed exhibit steady motion, excitability, bistability
between attractors of different type, and oscillations. With
such a survey we intended to reveal the possibilities hidden
in brush dynamics beyond known experimental results.
Hopefully, that will induce an experimental search for excit-
ability and bistability. The existence of oscillations has been
shown in experiments and we have offered an explanation by
a push-pull mechanism derived from Eq. �1� �19�.

Our model as presented here is for local brush dynamics
and applies to plane rigid or pointlike obstacles. It can be
extended to spatially extended soft obstacles, like the lamel-
lipodium of crawling cells, especially since the existence of
dynamic regimes does not require specific geometries. The
leading edge of lamellipodia as recorded in experiments ex-
hibits rich dynamics, including the repeated formation and
retraction of membrane protrusions. It is likely that many of
these events are controlled by some kind of stimulus and
pathway. However, the action of a local perturbation of the
shape of the leading edge on neighboring membrane regions
will depend on the local dynamic regime of the leading edge.
In both the excitable and bistable regimes, supercritical
events will lead to singular waves in the shape of the leading
edge. Similarly, wave phenomena in the oscillatory regime
can cause periodic spatiotemporal structures as, for example,
observed in �14,15�.

Recent theoretical approaches to the leading edge prob-
lem �32,33� do not consider explicitly the dynamics of the
brush of actin filaments, assuming that the obstacle velocity
is the same as the growth velocity of the gel. This is true in
the case of steady motion, when the brush reaches a station-
ary length distribution. However, precisely in the interesting
case of an oscillatory movement, the obstacle and gel growth
velocity are not equal. When the brush is buckled, the force
on the obstacle is high, resulting in high obstacle velocity; at
the same time, the high load reduces the polymerization ve-
locity. By contrast, when the filament tips are far from the
obstacle, the polymerization velocity is maximal, while the
force on the obstacle and its velocity are minimal. Thus, for
a general understanding of actin-based motility, the mechan-
ics of the obstacle has to be separated from the dynamics of
the actin gel growth. This implies the direct computation of
the obstacle velocity from the balance of forces. For this, the
dynamics of the length distribution of the brush has to be
considered explicitly, as done in �19� and here.

The dynamic regimes found in this paper can be the basis
for spatiotemporal structures in a spatially extended version
of this model. That will be the subject of future work.

APPENDIX

We follow here the derivation of the model equations
from �19�. Let Na�l , t� and Nd�l , t� denote the length distribu-
tions of attached and detached filaments. Their time dynam-
ics is described by

�tNa�l,t� = �l�ṽgNa� + kaNd − kdNa,

�tNd�l,t� = �l��ṽg − vp�Nd� − kaNd + kaNa. �A1�

The exchange between the attached and detached popula-
tions is given by attachment of detached filaments kaNd and
detachment of attached filaments kdNa. Shortening of the
grafted end �velocity ṽg�l ,��=vg�l�max�l /� ,1�, see main
text� and additional elongation of the free end �velocity vp�
for detached filaments induce only a shift of the distribution,
described by the advection terms in �A1�.

We define further the total numbers of attached and de-
tached filaments:

na�t� ª �
0

�

Na�l,t�dl, nd�t� ª �
0

�

Nd�l,t�dl ,

and the mean lengths of attached and detached filaments,

la�t� ª
1

na
�

0

�

lNa�l,t�dl, ld�t� ª
1

nd
�

0

�

lNd�l,t�dl .

Since ṽg→0 for l→0 �see main text�, and assuming
Na,d�l , t�→0 for l→� at all times t, we get further

�tna = �
0

�

�tNadl = kand − kdna = − �tnd, �A2�

�t�nala� = �
0

�

l�tNadl = �
0

�

ṽgNadl + kaldnd − kdlana,

�t�ndld� = �
0

�

l�tNddl = �
0

�

�ṽg − vp�Nddl + kdlana − kaldnd.

�A3�

Inserting �A2� into �A3� and solving for �tla and �tld leads to

�tla =
1

na
�

0

�

ṽgNadl + ka
nd

na
�ld − la� ,

�tld =
1

nd
�

0

�

�ṽg − vp�Nddl + kd
na

nd
�la − ld� . �A4�

For �t�=0 and ka=0, the equation for �tNd�l , t� can be solved
exactly by the method of characteristics. As can be easily
checked, all characteristics of the above equation converge to
the equilibrium length l*, at which growth of the free end by
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polymerization balances shortening of the grafted end by
cross linking:

ṽg�l*,�� = vp�l*,�� .

This means we obtain

Nd�l,t� → �
l0
min

l0
max

Nd�l�,0�dl���l − l*� ,

where l0
min and l0

max are the minimal and maximal lengths of
the polymer at time t=0. As discussed in �19�, the time scale
of this contraction is in the range of less than 2 s for differ-
ences between la and ld occurring during oscillations. That is
fast compared to the typical period of oscillations. Motivated
by this property, we make a monodisperse approximation
also in the dynamic case �t��0, ka�0. We set

Na�l,t� = na�t��„l − la�t�…, Nd�l,t� = nd�t��„l − ld�t�… .

�A5�

Inserting Eq. �A5� into Eq. �A4� leads to

�tla = ṽg�la,�� + ka
nd

na
�ld − la� ,

�tld = �ṽg�ld,�� − vp�ld,���Nddl + kd
na

nd
�la − ld� ,

and we obtain further �see equation for �t� in Eqs. �1��

�
0

�

�NaFa + NdFd�dl = naFa�la,�� + ndFd�ld,��

and

1

N
�

0

�

vg�l��Na�l,t� + Nd�l,t�� =
navg�la� + ndvg�ld�

na + nd
.
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